Andrews, Mel. 2023. “The Devil in the Data: Machine Learning & the Theory-Free Ideal.”
Breiman, Leo. 2001.
“Statistical Modeling: The Two Cultures.” Statistical Science 16 (3): 199–215.
https://www.jstor.org/stable/2676681.
Bzdok, Danilo, Naomi Altman, and Martin Krzywinski. 2018.
“Statistics Versus Machine Learning.” Nature Methods 15 (4): 233–34.
https://doi.org/10.1038/nmeth.4642.
De Bruin, Jonathan. 2023. “PyAlex.”
Humphreys, Paul. 2004. Extending Ourselves: Computational Science, Empiricism, and Scientific Method. Oxford University Press.
Knuuttila, Tarja, and Andrea Loettgers. 2023.
“Model Templates: Transdisciplinary Application and Entanglement.” Synthese 201 (6): 200.
https://doi.org/10.1007/s11229-023-04178-3.
Malaterre, Christophe, Jean-François Chartier, and Francis Lareau. 2020. “The Recipes of Philosophy of Science: Characterizing the Semantic Structure of Corpora by Means of Topic Associative Rules.” Plos One 15 (11): e0242353.
McInnes, Leland, John Healy, and James Melville. 2018.
“UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.” arXiv:1802.03426 [Cs, Stat], February.
https://arxiv.org/abs/1802.03426.
Singh, Amanpreet, Mike D’Arcy, Arman Cohan, Doug Downey, and Sergey Feldman. 2023.
“SciRepEval: A Multi-Format Benchmark for Scientific Document Representations.” arXiv.
https://arxiv.org/abs/2211.13308.
Zichert, Michael, and Adrian Wüthrich. 2024.
“Tracing the Development of the Virtual Particle Concept Using Semantic Change Detection.” arXiv.
https://doi.org/10.48550/arXiv.2410.16855.